Relaxed algorithms for p-adic numbers

نویسندگان

  • Jérémy Berthomieu
  • Joris van der Hoeven
  • Grégoire Lecerf
چکیده

Current implementations of p-adic numbers usually rely on so called zealous algorithms, which compute with truncated p-adic expansions at a precision that can be specified by the user. In combination with Newton-Hensel type lifting techniques, zealous algorithms can be made very efficient from an asymptotic point of view. In the similar context of formal power series, another so called lazy technique is also frequently implemented. In this context, a power series is essentially a stream of coefficients, with an effective promise to obtain the next coefficient at every stage. This technique makes it easier to solve implicit equations and also removes the burden of determining appropriate precisions from the user. Unfortunately, naive lazy algorithms are not competitive from the asymptotic complexity point of view. For this reason, a new relaxed approach was proposed by van der Hoeven in the 90’s, which combines the advantages of the lazy approach with the asymptotic efficiency of the zealous approach. In this paper, we show how to adapt the lazy and relaxed approaches to the context of p-adic numbers. We report on our implementation in the C++ library algebramix of Mathemagix, and show significant speedups in the resolution of p-adic functional equations when compared to the classical Newton iteration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

$p$-adic Dual Shearlet Frames

We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...

متن کامل

EXACT ALGORITHMS FOR p-ADIC FIELDS AND EPSILON CONSTANT CONJECTURES

We develop several algorithms for computations in Galois extensions of p-adic fields. Our algorithms are based on existing algorithms for number fields and are exact in the sense that we do not need to consider approximations to p-adic numbers. As an application we describe an algorithmic approach to prove or disprove various conjectures for local and global epsilon constants.

متن کامل

Relaxed Hensel lifting of triangular sets

In this paper, we present a new lifting algorithm for triangular sets over general p-adic rings. Our contribution is to give, for any p-adic triangular set, a shifted algorithm of which the triangular set is a fixed point. Then we can apply the relaxed recursive p-adic framework and deduce a relaxed lifting algorithm for this triangular set. We compare our algorithm to the existing technique an...

متن کامل

SIMULTANEOUS RATIONAL APPROXIMATIONS OF p-ADIC NUMBERS BY THE LLL LATTICE BASIS REDUCTION ALGORITHM

In this paper we construct multi-dimensional p-adic approximation lattices by simultaneous rational approximations of p-adic numbers. For analyzing these p-adic lattices we apply the LLL algorithm due to Lenstra, Lenstra and Lovász, which has been widely used to solve the various NP problems such as SVP (Shortest Vector Problems), ILP (Integer Linear Programing) .. and so on. In a twodimensiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010